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Local minimal energy landscapes in river networks

Achille Giacometti
INFM Unitá di Venezia, Dipartimento di Scienze Ambientali, Universita´ di Venezia, Calle Larga Santa Marta DD2137,

I-30123 Venezia, Italy
~Received 19 April 2000!

The existence and stability of a universality class associated with local minimal energy landscapes is
investigated. Using extensive numerical simulations, we first study the dependence on a parameterg of a
partial differential equation, which was proposed to describe the evolution of a rugged landscape toward a local
minimum of the dissipated energy. We then compare the results with those obtained by an evolution scheme
based on a variational principle~the optimal channel networks!. It is found that both models yield qualitatively
similar river patterns and similar dependences ong. However, the aggregation mechanism is strongly depen-
dent on the value ofg. A careful analysis suggests that scaling behaviors may depend weakly on bothg and
on initial conditions, but in all cases are within observational data predictions. Consequences of our results are
finally discussed, and the most plausible scenario is presented.

PACS number~s!: 64.60.Ht, 92.40.Fb, 05.60.2k
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I. INTRODUCTION

Understanding the development of a landscape in term
fundamental mechanical principles is a formidable task@1#.
In spite of this high complexity, recent theoretical stud
resulted in considerable progress by considering the is
from a viewpoint analogous to the one taken in conventio
critical phenomena@2–8#, where simple models were ex
ploited to identify universality classes. The main idea of t
approach is indeed to focus on a few fundamental ingredi
which, in the spirit of critical phenomena, are expected
provide a reasonable description of the large-scale prope
of the network.

The remarkable properties of river networks have be
known for some time, and they can be condensed in a
phenomenological scaling laws which have been confirm
to hold in observational data@9#. While these laws do no
explain the underlying physical mechanisms, they never
less provide guidelines for their search. Hence any ne
proposed model for river networks ought to be tested aga
these laws. In the language of critical phenomena, those s
ing laws can be used to derive critical exponents, and t
discriminate among different universality classes. Amo
such laws is the fundamental role in the physics of the e
sion of a landscape due to the flow of water over it, play
by the slope-area law~see Ref.@1# for a review!.

A few Langevin-like equations were recently proposed
describe the evolution of the landscape under the effec
erosional processes. In Ref.@5#, reparametrization invarianc
arguments@10# were used to derive a dynamical equati
which yields the slope-area law as a stationary state.
same equation was obtained by Somafai and Sander@7# us-
ing Landau arguments. Other proposals were also adva
@6,11–13#.

The equation proposed in Ref.@5# was studied both ana
lytically in 111 dimensions~one spatial and one tempora!
and numerically using a self-consistent~SC! solution in 2
11 dimensions. It was shown to predict a fairly reasona
stationary state quite different from the starting network a
ing as initial condition. This type of analysis hinges on t
PRE 621063-651X/2000/62~5!/6042~10!/$15.00
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observation that the network representing the river has
evolution mirroring that of the evolution profile. Other met
ods have also been devised which directly address the t
logical properties of the network itself, the best known bei
the optimal channel network~OCN! @14#. This is a lattice
model where a functional describing the dissipated energ
minimized in order to find the optimal configuration, and it
based on the idea that, presumably, the erosional pro
taking place on a landscape is driven by a striving for op
mality. A simulating annealing procedure@15# has been
implemented to this end both at zero@2# and finite tempera-
tures@16#. While the latter aimed to find the absolute min
mum, the former is expected to display local minima on
Using exact bounds and finite-size scaling, Maritan and
workers@17,18# showed that the absolute minimum belon
to a mean-field universality class, which, in turn, means t
the corresponding network has a highly symmetric patt
with small rivers draining into larger rivers in a predictab
way ~this network is akin to the Peano basin@19#!. However,
this minimum is not easily reachable in the space of all c
figurations, and one is then led to suspect that real rivers
better described by configurations related to local minim
We further note that stationary states of the aforementio
dynamical equations are also expected to be associated
local minima for the same reason.

In view of the above discussion, it is apparent that a m
complete description of the stability and the scaling behav
associated with these local minima would be desirable. T
present work is an attempt in this direction. Our aims a
threefold. Our first goal is a full characterization of the po
sible universality class associated with local minima. Us
the SC numerical procedure envisaged in Ref.@5#, we extend
previous numerical results both in size and statistics, and
use a finite size procedure for a more accurate estimate o
exponents. We then compare these exponents with those
culated using a zero-temperature simulation in the O
framework with similar sizes and statistics. Our second g
is the generalization of the dynamical equation to includ
tunable parameter which turns out to be related to the 0<g
<1 parameter considered in OCN’s, and which is resp
6042 ©2000 The American Physical Society
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PRE 62 6043LOCAL MINIMAL ENERGY LANDSCAPES IN RIVER NETWORKS
sible for the aggregation mechanism. In Ref.@18# it was
shown that theabsoluteminimum is insensitive to a variation
of g in the interval 1/2<g,1 @20#. We find that although
the final patterns display marked differences as a functio
g, critical exponents show a much smaller discrepan
which our results indicate to be marginal~at the edge of error
bars!, both in the SC and OCN cases. Finally we test
stability of our results against a variation in the initial co
ditions. We find that even in this case a marginal differen
appears in the effective critical exponents.

The paper is organized as follows. In Sec. II, we revi
the dynamical equation, whereas in Sec. III scaling laws
critical exponents are briefly recalled. Section IV conta
the definition of the OCN, and our results are presented
Sec. V. Finally Sec. VI contains some concluding rema
and future perspectives.

II. DYNAMICAL EQUATION

A rather general dynamical equation consistent with g
eral principles, and capturing the physics of erosional p
cesses occurring in a river basin, is@5,7#

]h~x,t !

]t
5u1n¹2h~x,t !2Qa~x,t !@¹h~x,t !#21h~x,t !.

~1!

Hereh(x,t) andQ(x,t) are the height of the landscape a
the flow rate at positionx and timet, h(x,t) is a noise term,
anda is a parameter which will be related tog ~see below!.
The constant termu on the right-hand side of Eq.~1! mimics
the so-called geological uplift, which is known to origina
by tectonic forces. The second term represents a local d
sion term of strengthn, condensing both smoothing~round-
ing of hilltops! and sedimentation~filling of valleys! pro-
cesses. The third term is nonlocal, and corresponds to
erosion driven by the water flow on a surface withQ(x,t)
representing the flow through sitex. The exponenta is a
parameter of the model which was assumed to be equal
in Refs.@5# and@7#. The last noise term is added to accou
for small-scale stochastic processes such as rainfall fluc
tions. In the attempt of extracting the basic features ass
ated with the third term, one can ignore both the diffusi
and noise terms~the accuracy of this approximation was di
cussed in Ref.@5#!. In this case, a stationary state is obtain
when the uplift term balances the flow dependent erosio
term, that is, when

u¹h~x,t !u;Qg21~x,t !, ~2!

where, for later convenience, we defineg512a/2. Most
previous work was performed witha51 (g51/2) ~there are
a few exceptions with aims and methodologies differ
from ours; see, e.g., Ref.@1#!. In this case Eq.~2! is known as
the slope-area law@1#, which is a robust empirical law veri
fied by real field observational data. We shall see later
how a is related to the dissipated energy functional. Here
note that if we assume~as we shall do hereafter! uniform
rainfall ~and no ground water!, then Q(x,t);a(x,t) where
a(x,t) is the area of the basin draining into pointx at timet.
The basic result of this dynamical equation is that the n
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linear term is able to account for the correct relations
between local slope and water flowrate.

III. CRITICAL EXPONENTS AND SCALING LAWS

River networks are a remarkable example of systems g
erned by scaling laws. Although the concept of power a
scaling laws has been known to hydrologists for half a c
tury, it was not until recently that this concept was put into
well defined framework@4,18# in analogy with conventiona
nonequilibrium critical phenomena where power laws are
sociated with critical exponents. For the sake of comple
ness, here we shall briefly review a few of the central la
appearing in river networks, which we regard as the m
fundamental.

Hack observed that the total areaa draining into a given
point, and the upstream lengthl going from that point to the
source though the path of maximum water flow, were n
independent but related by@21#

l;ah, ~3!

whereh is often referred as Hack’s exponent, and ranges
the interval @0.5–0.6# in real rivers. The distributions o
drainage areas and upstream lengths also follow a power
Within the context of finite-size scaling, these may be wr
ten as@3,4#

p~a,L !5a2t f ~a/Lf! ~4!

for areas, and

p~ l ,L !5 l 2cg~ l /Ldl ! ~5!

for lengths. In Eq.~4!, p(a,L) is the distribution of drainage
areas on a basin of sizeL, and f (x) is a finite-size function.
It defines two critical exponentst and f which are not in-
dependent@4#. Similarly p( l ,L) is the distribution of the
upstream lengths on a basin of sizeL, g(x) is a finite-size
function, and there exists a relation betweenc anddl . Note
that f and dl define the ‘‘typical’’ area (atyp;Lf) and
length (l typ;Ldl). Finally we remark that one usually distin
guishes between self-affine basins (dl51,f,2) and self-
similar basins (dl.1,f52) @22#, and in both cases only on
exponent out of four is independent. They are related
scaling relations as@4,18,22#

h5
dl

f
, t522h, c5

1

h
. ~6!

IV. ZERO-TEMPERATURE OCN: LOCAL MINIMA

Within the context of OCNs, the ‘‘dissipated energy’’ of
river network at a given time, can be written, in continuu
notations, as@14#

E~ t !5E dxu¹h~x,t !uQ~x,t !. ~7!

The local gradientu¹h(x,t)u and the water flow rateQ(x,t)
are expected to satisfy Eq.~2!. Hence one obtains
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6044 PRE 62ACHILLE GIACOMETTI
E~ t !5E dx Qg~x,t !. ~8!

We note that although the energy expression~8! was derived
in the context of OCN@2#, in principle it could be defined in
the evolution equation~1! as well, thus providing a way o
monitoring the rate of approach to steady state.

The basic assumption of the OCN is that there is a t
dency of any real river basin to assume a configurat

FIG. 1. A spanning tree on a 64364 square lattice with eigh
nearest neighbors, four in the north-south and east-west direct
and four along the diagonal directions. The outlet is on the w
side ~out flowing!, and on the east side there is an infinite wa
whereas there are periodic boundary conditions in the north-s
direction. The thickness of the line at each point is proportiona
the flow through that point. The seeming loops are just an artifac
the drawing.

FIG. 2. A Scheidegger network withL564. Boundary condi-
tions are the same as in Fig. 1. The directness of the network
vides a privileged east-west direction.
-
n

which minimizes Eq.~8!. A natural question arising is the
characterization of the local and absolute minima ofE. It was
shown@17,18#, that theabsolute minimumof E is insensitive
to a variation of the value ofg in the interval 1/2<g,1
@20#, and thenh51/2, t53/2, anddl51. The analogous
issue in the case of local minima is much less clear. In fa
wheng50.5, numerical work@18# suggested that there ex
ists a set of local minima which presumably corresponds
new universality class that is the relevant one for real rive
Indeed, only exceptional events are able to radically mod
river courses, and so local minima of dissipated energy t
the system with a high probability and therefore domin
the statistics. It is then a vital issue to discriminate whet
or not local minima configurations are indeed related to
well defined and robust universality class independent ong.

V. RESULTS

In this section, we describe numerical procedures and
sults in detail for each case. All calculations are carried
on a L3L square lattice with periodic boundary condition
in one direction, which we identify as the transverse dire
tion. Multiple outlet are allowed in the outflowing longitud
nal direction~the west side in the figures! whereas an infinite
wall is set up on the opposite side~east side!. All averages
considered in the statistics are carried out only over the r
with the largest flow. It is worth stressing that the choice
considering only the maximum river in a multiple outlet e

ns,
st

th
o
f

o-

FIG. 3. Dissipated energy per unit of length, as a function of
number of iterations~time t) of the self-consistent solution of th
dynamical equation, starting with the spanning tree of Fig 1. T
parameterg is the value appearing in Eq.~2!. The system size is
L5512, and each point of the curve is an average over all confi
rations which have gone at least that far in the number of iteratio
All quantities reported in this and the following figures are dime
sionless.
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PRE 62 6045LOCAL MINIMAL ENERGY LANDSCAPES IN RIVER NETWORKS
vironment corresponds to considering the statistical beha
of rivers that are in competition to drain a given region. O
the other hand, a single river within a given region is mo
appropriate if geological constraints are known to exist.

Typically eight nearest neighbors~NN’s!—four, associ-
ated with the square lattice and four associated with the
diagonal directions—are allowed. A somewhat more
stricted choice considers only the four natural NN’s asso
ated with the square lattice structure. In view of universa
one would expect that the details of the lattice struct
should not matter. This second choice has the consider
advantage of being less time consuming for numerical p
poses. For this reason, although all following figures disp
patterns obtained with eight-NN’s, the results reported in t
work are obtained with statistics based on four NN’s. In o
example, we have explicitly checked that the outcomes us

FIG. 4. A typical network obtained as a final output of th
self-consistent procedure described in Sec. V B. HereL564 and
g50, and the initial condition is the spanning tree of Fig. 1.

FIG. 5. Same as in Fig. 4, withg50.25.
or
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the two choices are consistent within the statistical errors
Finally, in all our networks, the drainage areaa(x,t) is

computed, at each time step, in a standard way accordin
@1#

a~x,t !5(
y(x)

a~y,t !11, ~9!

wherey(x) denotes all sitesy which drain intox, and the last
term on the right hand side represents a unit rainfall input
each site at all times.

A. Initial condition

There are many possible initial conditions that can
used in numerical analysis of river networks. A popular o
among hydrologists is a deterministic comblike structure@1#.
However, this initial condition suffers from various draw

FIG. 6. Same as in Fig. 4, withg50.5.

FIG. 7. Same as in Fig. 4, withg50.75.
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6046 PRE 62ACHILLE GIACOMETTI
backs@23# and its use in multiple outlet cases, such the o
treated here, appears to be somewhat inconvenient. H
we consider here two other physically reasonable choi
namely a spanning tree~ST! and a Scheidegger networ
~SN!. Although ST’s are well known in statistical physic
mainly due to their relation with theq→0 limit of the Potts
model @24#, only recently have their topological propertie
been studied in detail@25#. A suitable variation of spanning
trees was even proposed as a topological model for r
networks @22,26#. We have generated ST’s with multipl

FIG. 8. Same as in Fig. 4, withg51.00.

FIG. 9. Effective exponentt as a function of the areaa in the
stationary state of the dynamical equation withg50.5. HereL
5256, and the initial condition is the spanning tree of Fig. 1.
e
ce
s,

er
outlets by using an adapted Broders algorithm~see Ref.@25#,
and references therein!. We have considered sizes rangin
from L532 to 512, and statistics based on a number of c
figurations ranging from 500 to 100, respectively. We th
performed the finite-size analysis described in Sec. V B
extract the most reliable values of the exponents. Our b
result for the exponents aret51.37860.002, c51.596
60.003, h50.63360.003, dl51.2560.01, and f52.00
60.01 in excellent agreement with the exact resultst
51.375, c51.6, h50.625, anddl51.25 @25#. This also
provides a good test of the quality of our data analysis. N
that the exact value off, albeit not known, can be derive
from the knowledge ofh using Eq. ~6!. This predictsf
52.0, in perfect agreement with our computed value. W
also note that the obtained results are nearly identical to
one predicted and numerically generated for a single ou
@26#.

A ST is a self-similar network in that it is undirected an
isotropic. A quite different choice~directed and anisotropic
and hence self-affine! is a SN. This was again proposed as
topological model for river networks~see, e.g., Ref.@1#! and
the t exponent was exactly determined via a mapping t
one-dimensional model for mass aggregation@27#. A similar
mapping to a diffusion-reaction model also provides the
lution in general dimensionality@28#. Our best results for the
critical exponents with the same statistics as above art
51.33760.003, c51.4960.02, h50.6960.02, dl50.96
60.01, andf51.5360.02, which are in excellent agree
ment with the expected values@t being exact, the others
determined via Eq.~6!#; that is, t54/3, c51.5, h50.75,
dl51, andf51.5.

FIG. 10. Finite-size 1/L extrapolation for the value oft obtained
with the dynamical equation for the casesg50, 0.25, and 0.5. In all
cases the initial condition is the spanning tree of Fig. 1.
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TABLE I. Critical exponentst, c, andh as a functions ofg for both the self-consistent~SC! procedure
and the optimal channel networks~OCN’s! at zero temperature. The values in parentheses are those obt
from the computed value oft using the scaling relations. Forg50, the OCN exponents reported are th
exact ones corresponding to the initial conditions~a spanning tree in the present case!, since the energy is a
constant.

g tOCN tSC cOCN cSC hOCN hSC

0.00 1.38 1.4060.01 1.6 1.6960.03 (1.67) 0.625 0.6160.02 (0.60)
0.25 1.4260.01 1.4260.01 1.7160.07 (1.72) 1.6860.05 (1.72) 0.6460.03 (0.58) 0.5860.01 (0.58)
0.50 1.4460.01 1.4660.01 1.860.1 (1.79) 1.8260.05 (1.85) 0.6160.03 (0.56) 0.5660.01 (0.54)
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In Figs. 1 and 2, we depict typical patterns for a ST an
SN, respectively. The presence of multiple outlets magni
the main difference between a ST and a SN. A ST is c
structed in such a way that total freedom is given to
meandering of streams, the only constraint being that the
terminate on the same line~the west sides in the figures!.
Typically this allows the formation of a main big river o
size considerably larger with respect to the others. For S
the east-west preferred direction prevents the forming
such a larger river, and many smaller rivers are usu
present, as shown in Fig. 2.

B. Dynamical equation: A self-consistent solution

As we discussed in Sec. II, we seek the stationary st
of the simplified equation

]h~x,t !

]t
5u2Qa~x,t !@¹h~x,t !#21h~x,t !, ~10!

where a52(12g). The stationary averaged states of E
~10! are expected to conform to Eq.~2!. Despite the apparen
simplicity of the equation, an explicit numerical solutio
proves to be rather slow@5#. The reason for this can be trace
back to the particular form of the erosion term. According
Eq. ~10! only sites with a non-negligible combinatio
Qa(x,t)@¹h(x,t)#2 will affect the change of the pattern. A
it turns out, this yields a long time transient during which t
elevation profile evolves very slowly.

Since we are mainly interested in stationary states, the
a way out from this situation@5#. The main idea is to star
with an arbitrary network~e.g., a ST or a SN!, and recur-
sively construct the heights starting from the outlets with
aid of Eq. ~2!. From the derived landscape, a new netwo
~in general different from the original one! can then be ob-
tained by assuming that at each site the outward directio
along the steepest descent path, and using Eq.~9!. The noise
term in Eq.~10! is mimicked by the unity term in Eq.~9!.
The procedure can then be iterated until self-consistenc
finally achieved. The final configuration is, by definition,
stationary state of Eq.~10!.
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The convergence of the above procedure as a functio
the number of iterations is reported in Fig. 3 for vario
values ofg. Two remarks are in order. First we note that t
dissipated energy as obtained from the above SC proce
doesnot have any physical meaningin the transient state. In
other words, the definition of ‘‘time’’ for the independen
variable appearing in Fig. 3 should be considered only a
shorthand notation for ‘‘number of iterations.’’ Second, it
apparent that the valueg50.5 seems to be the one with th
slowest convergence ratio. This is probably due to the p
ticular role played by the valueg50.5, as will become clea
shortly.

Figures 4–8 depict typical patterns obtained on chang
the parameterg in the interval@0,1#. The effect of the value
of g on the aggregation pattern is evident. Asg increases
from 0 to 1, single large rivers draining the entire basin in
snakelike form are less and less favored. The pattern fog
50 has a strong memory of the original initial tree. Th
overall effect of the SC procedure is to disfavor a long m
andering of the streams, thus providing a self-affine chara
to the final tree. The main river becomes rather straight
g50.25, and the whole pattern appears to be more symm
ric with respect to the case ofg50. A noteworthy feature is
that this tendency is inverted asg→0.5 and returns back fo
g50.75. As g→1, rivers become very directed, as on
would expect on the ground that this limit corresponds to
Scheidegger network@18#. The fact thatg50.5 most closely
resembles real rivers is a reflection of the natural selection
the erosional processes of this value ofg in terms of Eq.~2!,
as already well documented in the literature~see, e.g., Ref.
@1#!.

In our numerical estimates of the exponents, for simp
ity, we shall restrict our attention to the half region@0,0.5#.
We also note that this is the region inaccessible to the a
lytical scheme of Ref.@17#.

For a more accurate evaluation of the critical exponentt
andc, it proves convenient to introduce the integrated pro
abilities

P~a,L !5E
0

a

da8p~a8,L !5a12tFS a

LfD ~11!
ction
TABLE II. Critical exponentf stemming from both the SC procedure and the OCN scheme, as a fun
of the value ofg and of the value of the orderq of ratios defined in Eqs.~13! and ~14!.

q g50.00 (SC) g50.25 (SC) g50.50 (SC) g50.00 (OCN) g50.25 (OCN) g50.50 (OCN)

1 2.160.1 2.260.1 2.260.1 - 2.060.1 2.160.1
2 2.160.1 2.260.1 2.260.1 - 2.060.1 2.160.1
3 2.160.1 2.260.1 2.360.1 - 2.060.1 2.060.1
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TABLE III. Critical exponentdl obtained from both the SC procedure and the OCN scheme, as a fun
of the value ofg and of the value of the orderq of ratios ~13! and ~14! .

q g50.00 (SC) g50.25 (SC) g50.50 (SC) g50.00 (OCN) g50.25 (OCN) g50.50 (OCN)

1 1.360.1 1.360.1 1.160.1 - 1.260.1 1.360.1
2 1.360.1 1.460.1 1.260.1 - 1.360.1 1.360.1
3 1.360.1 1.460.1 1.260.1 - 1.360.1 1.360.1
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P~ l ,L !5E
0

l

dl8p~ l 8,L !5 l 12cGS l

Ldl
D , ~12!

whereF(x) andG(x) are related tof (x) andg(x), defined
in Eqs. ~4! and ~5!, in an obvious way. An efficient way o
computing the exponents is through the so-called ‘‘eff
tive’’ ~sometime also referred to as ‘‘running’’! exponents.
In the present case they are defined as

t~a!512
] log P~a,L !

]a
~13!

and

c~ l !512
] logP~ l ,L !

] l
. ~14!

One then obtains an effective exponent for each value of
independent variable (a or l ).

FIG. 11. Dissipated energy per unit of length, as a function
the number of iterations in the OCN procedure. Here the sizeL
5256, and again each point of the curves are averaged ove
configurations which have reached that timet. The initial condition
is the spanning tree of Fig. 1.
-

e

Figure 9 shows one typical result on a 2563256 lattice.
We can divide the obtained values roughly into four regio
The first region (1<a,10) corresponds to a region of n
scaling. Small rivers belonging to the second region (10<a
,100) have an exponent close to the absolute minim
value t51.5. This is consistent with the picture of typic
rivers ~see Fig. 6!, where small rivers display a marke
straightness similar to the one of the absolute minimum@18#;
this means that they quickly assume configurations con
tent with the absolute minimum~independent of the initial
conditions!. Larger areas are associated with larger riv
which have longer memory of the initial condition the~ST in
the present case!. Hence the corresponding exponent is se
sibly smaller~closer to the ST value 1.38). The last regio
corresponds to the finite-size cutoff, and must be discard

After discarding the first and fourth regions, the obtain
values can then be grouped into local bins, and a local a
age exponent can be associated with each of them. Statis
fluctuations within each box then yield an estimate of er
bars. This provides our best estimate of the exponent
each value ofL, and a simple 1/L extrapolation is then car
ried out to extract the final values. This is depicted in Fig. 1
and the corresponding best estimates of this method are

f

all FIG. 12. Finite-size 1/L extrapolation for the value oft obtained
with the OCN (T50) for the casesg50.25 and 0.5. In both case
the initial condition is the spanning tree of Fig. 1.
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TABLE IV. Critical exponentst, c, andh for g50.5 as a function of the initial conditions. As in th
text, ST and SN stand for a spanning tree and a Scheidegger network, respectively. SC and OCN h
same meanings as above. Values in parentheses are scaling predictions.

tOCN tSC cOCN cSC hOCN hSC

ST 1.4460.01 1.4660.01 1.860.1 ~1.79! 1.8260.05 ~1.85! 0.6160.03 ~0.56! 0.5660.01 ~0.54!
SN 1.4460.03 1.4360.02 1.860.2 ~1.79! 1.760.1 ~1.75! 0.6160.03 ~0.56! 0.5560.02 ~0.57!
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ported in Table I. An analogous procedure leads to the b
estimates forc, as again reported in Table I. The sizes a
statistics are identical to those considered for the initial c
ditions, and hence these simulations are rather time cons
ing.

One can note a weak dependence ong for both t andc.
One way of computingf anddl is through the collapse plot
of the probabilitiesP(a,L) and P( l ,L). However we have
found that a satisfactory collapse can be achieved o
within a limited range of the appropriate variable (a/Lf and
l /Ldl). Hence we have opted for an alternative scheme h
ing on the calculation of the following ratios:

Ma
q~L ![

^aq11&a

^aq&a

;Lf, q51,2, . . . , ~15!

where averages are over the probability densitiesp(a,L) ~of
the maximum river!, and theL dependence is straightforwar
@4#. A similar relationship holds for the lengths

Ml
q~L ![

^ l q11& l

^ l q& l

;Ldl, q51,2, . . . . ~16!

The results forq51, 2, and 3 are reported in Table II for th
exponentf and in Table III for the exponentdl . Surpris-
ingly, the values forf are consistently larger than the spac
filling value f52, which is expected to be the upper bou
for this exponent. This is probably due to a deficiency of t

FIG. 13. A typical 64364 network obtained as a final output o
the self-consistent procedure described in Sec. V B upon sta
with the Scheidegger network of Fig. 2.
st

-
m-

ly

g-

-

s

procedure during a crossover from a self-similar regime~the
initial ST! to a self-affine pattern~the final configuration!.
Indeed we shall see later on that this feature is not pre
when one starts with a self-affine network~e.g., a SN! from
the outset. A seemingly large value ofdl appears, probably
due to the same reason. Overall, one can note a rather w
~if any! dependence ong, and almost no dependence onq.
Finally Hack’s exponenth was computed from its definition
@Eq. ~3!# using an effective exponent method to be describ
below.

Let us assume a power-law dependence for a gen
function as given by

f ~x!;xu, u.0. ~17!

On integratingf (x) ~between lower and upper limits, sayx0
andx), we find

u5
@x f~x!2x0f ~x0!#

E
x0

x

dz f~z!

21. ~18!

The effective exponent, obtained using Eq.~18! in Eq. ~3!,
with f (x)[a, x[ l , andu[1/h, can then be analyzed with
the same procedure~local average plus 1/L extrapolation!
outlined above. We note that fora we have used an average
value over all areas corresponding to the same length.
final results are reported in Table I, and one can see
there is an overall good agreement with scaling laws.

C. OCN

The minimization of the energy functional@Eq. ~8!# goes
through an algorithm akin to the one exploited by Sunet. al
@16#. It is based on the following steps.

~1! An initial configuration~ST or SN! is generated and
its dissipated energy is computed according to Eq.~8!. By
definition, this initial network has no loops.

~2! A link is randomly selected, and its local outflow
also randomly chosen.

g

TABLE V. Comparison between exponentsf as obtained from
both the SC procedure and the OCN scheme, as a function o
value of the initial conditions and of the value of the orderq of
ratios ~13! and ~14!. As in the text, ST stands for a spanning tr
and SN for a Scheidegger network. Hereg50.5.

q fST (SC) fSN (SC) fST (OCN) fSN (OCN)

1 2.260.1 1.860.1 2.160.1 1.760.1
2 2.260.1 1.860.1 2.160.1 1.760.1
3 2.360.1 1.860.1 2.060.1 1.760.1
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~3! This new configuration is tested for loop creation. If
loop has been created, the configuration is rejected and
~2! is repeated.

~4! The energy of the new candidate configuration is co
puted. If it is smaller than the previous one, the new confi
ration is accepted; otherwise it is rejected.

~5! Steps~2!–~4! are repeated until the energy does n
change within a given tolerance.

The final configuration is regarded as a local minimu
This scheme is patterned after a standard Metropolis a
rithm at zero temperature, and averages are over many
ferent configurations~ranging from 500 atL532 to 100 at
L5256). Figure 11 depicts the dissipated energy per uni
length as a function of the convergence ‘‘time’’~i.e., the
number of total iterations of the algorithm!. The similarity
with patterns obtained from the SC procedure is evide
Here, however, the typical convergence time is much lon
than before.

Critical exponents are computed with the same presc
tion given in Sec. V B. In Fig. 12 we show the resultin
1/L extrapolation. The final best estimates are reported
Table I.

Once more, a weak dependence ong (t increases asg
increases! can be noticed. All other exponents are consist
with scaling relations~6!. It is worth stressing that exponen
are nearly consistent~at the edge of statistical errors! with
those previously obtained from the dynamical equation.

Regarding the exponentsf anddl , they can be found in
Tables II and III, respectively. Here too, the same feat
discussed in Sec. V B, in connection with the exponent v
ues off anddl , applies.

D. Independence of the initial condition

Our final task is a test of the sensitivity of critical exp
nents to the initial conditions. To this end we have chang
the initial condition from a ST to a SN for both the dynam
cal equation and the OCN. The main difference between
two initial conditions is that while the latter is a directe
network, the former is not. Table IV reports the comparis
for the caseg50.5, and Fig. 13 depicts the network resultin
from the SC scheme, for a typical final state. Despite
obvious memory of the initial network~see Fig. 2!, the typi-
cal distance among large rivers is larger than the initial o
This in turn yields a higher value forH, and hence nontrivia
exponents. It is remarkable that although these patterns
pear to be considerably different from those obtained w

TABLE VI. Comparison between exponentsdl resulting from
both the SC procedure and the OCN scheme, as a function o
value of the initial conditions and of the value of the orderq of
ratios ~13! and ~14!. As in the text, ST stands for a spanning tr
and SN for a Scheidegger network. Hereg50.5.

q dlST (SC) dlSN (SC) dlST (OCN) dlSN (OCN)

1 1.160.1 0.960.1 1.360.1 0.960.1
2 1.260.1 1.060.1 1.360.1 1.060.1
3 1.260.1 1.060.1 1.360.1 1.060.1
tep
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starting with a ST, the two sets of critical exponents a
nevertheless consistent within the statistical errors.

As a final comment, in this case we find values off and
dl in very good agreement with scaling predictions. The
sults for different ratiosq in the caseg50.5 for both the SC
and the OCN, along with the comparison with the cor
sponding values stemming from ST’s ,are reported in Tab
V and VI, respectively.

VI. CONCLUSIONS

In this paper we have addressed the issue of the exist
and robustness of the universality class associated with la
scapes corresponding to local minimal energies. To this
we first extended previous studies for both the SC solution
a Langevin equation and the OCN’s variational metho
Higher sizes and statistics were exploited in both cases
~to our knowledge!, for the first time, implemented the mos
physical procedure of basing statistics only on the river w
the largest flow.

Second, we monitored the dependence of critical ex
nents on a parameterg associated with the slope-area law
one case~SC!, and with the dissipated energy in the oth
~the OCN!. Our results give compatible critical exponen
between SC and the OCN within the error bars, but a w
and similar dependence ong appears in both models.

Finally we have tested the stability of the obtained resu
for both the SC and the OCN with respect to changes in
initial conditions. Although the obtained final patterns d
play a dependence on initial conditions, critical expone
appear to be insensitive to this dependence.

As a by-product of our investigation, we found that th
SC solution of the dynamical equation is a very power
method to investigate river networks, as it is capable of p
viding useful information on the stationary state in a simp
and physical way. Another interesting point, from a nume
cal point of view, is that this procedure typically achiev
convergence much faster with respect to the OCN schem

In view of our results we can now summarize the arg
ments favoring and disfavoring the appearance of a univ
sality class associated with local minima. As we mention
in our discussion of Fig. 10, the typical evolution of a ne
work appears to depend on the considered length sc
Small rivers very quickly settle to their final state, wherea
much longer time is required to large rivers to ‘‘forget’’ the
initial conditions. This is also reflected by the difficulty i
collapsing the distribution probabilities of botha andl into a
single plot for a reasonably extended range of the co
sponding variable. It is then possible that although onlytwo
universality classes~one associated with the initial conditio
and the other to the absolute minimum! are present, an inter
mediate universality class sets on due to both the avera
over different regimes and the difficulty of reaching the a
solute minimum.

On the other hand, in support of the existence of a n
universality class, we cite the fact that critical exponents
different from those of both the ST and SN—on starting w
these initial conditions, critical exponents in the final co
figurations clearly deviate from their initial values. Furthe
more, all exponents are found to be robust, and to obe

he
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scaling relations summarized in Sec. III.
Overall we believe that the evidence suggested by

results favors this second possibility which was also hinte
in a different context@29#. In this respect the weakg depen-
dence of the critical exponents remains unexplained.

It would be interesting to generalize the present calcu
tion in two aspects. For the dynamical equation, it would
instructive to tackle the problem of an explicit solution
Eq. ~1!. This route has the advantage that Eq.~2! ~the key
relation between erosional process and network topolo!
can be thenderived rather thanassumedas in the self-
consistent procedure. Similarly, a parallel calculation co
,

s,

I.

.

p

d.

ett

E.
r
at

-
e

y

d

also be implemented in the OCN framework, upon start
with the more general expression given in Eq.~7!.
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